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Application of interpretable machine learning for early prediction
of prognosis in acute kidney injury
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Background: This study aimed to develop an algorithm using the explainable artificial intelligence (XAI)
approaches for the early prediction of mortality in intensive care unit (ICU) patients with acute kidney
injury (AKI).
Methods: This study gathered clinical data with AKI patients from the Medical Information Mart for
Intensive Care IV (MIMIC-IV) in the US between 2008 and 2019. All the data were further randomly
divided into a training cohort and a validation cohort. Seven machine learning methods were used to
develop the models for assessing in-hospital mortality. The optimal model was selected based on its
accuracy and area under the curve (AUC). The SHapley Additive exPlanation (SHAP) values and Local
Interpretable Model-Agnostic Explanations (LIME) algorithm were utilized to interpret the optimal
model.
Results: A total of 22,360 patients with AKI were finally enrolled in this study (median age, 69.5 years;
female, 42.8%). They were randomly split into a training cohort (16770, 75%) and a validation cohort
(5590, 25%). The eXtreme Gradient Boosting (XGBoost) model achieved the best performance with an
AUC of 0.890. The SHAP values showed that Glasgow Coma Scale (GCS), blood urea nitrogen, cumulative
urine output on Day 1 and age were the top 4 most important variables contributing to the XGBoost
model. The LIME algorithm was used to explain the individualized predictions.
Conclusions: Machine-learning models based on clinical features were developed and validated with
great performance for the early prediction of a high risk of death in patients with AKI.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Background

Acute kidney injury (AKI), recognized as a serious disorder that
acutely affects the kidney’s filtration function, is very common in
critically ill patients and has a high mortality rate [1–3]. A recent
multinational cross-sectional study reported that AKI occurred in
more than half of patients treated in the intensive care unit (ICU)
[4]. Meanwhile, increasing AKI severity was strongly associated
with increased mortality even after adjusting for possible con-
founders [4]. Despite the large number of new therapeutic strate-
gies that have been conducted, no effective treatment has
consistently demonstrated clinical benefits.

Early identification of AKI patients at high risk for clinical dete-
rioration is of great importance and may help to deliver proper care
and optimize the use of limited resources. Considering the poten-
tial benefits of electronic alerts in AKI, many researchers have
developed a variety of machine learning-based models to predict
mortality for AKI patients [5–8]. However, these previously estab-
lished models were limited to clinical implementation due to the
minimal interpretability and black box nature of the algorithms
[9]. Opening the black box is crucial because it can allow clinicians
to easily understand the internal logic of machine learning (ML)
[10,11]. Recently, Explainable Artificial Intelligence (XAI) has been
introduced to address the fundamental question about the ratio-
nale of the decision-making process in ML. The most widespread
explainable techniques comprise SHapley Additive exPlanation
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(SHAP) [12] and Local Interpretable Model-Agnostic Explanations
(LIME). These new interpretable methods have been successfully
applied to explain the ML models related to mortality prediction
in acute gastrointestinal bleeding [13] and sepsis [14], prediction
of antimicrobial resistance [15] and the occurrence of AKI follow-
ing cardiac surgery [16].

However, as far as we know, there has been relatively little
analysis of the reliability and robustness of the explanation meth-
ods in outcome prediction among AKI. Therefore, in this study, we
aimed to use a ML approach to predict in-hospital mortality in crit-
ically ill patients with AKI and utilize XAIs to increase the inter-
pretability, fairness, and transparency of ML.
2. Methods

2.1. Ethics

The establishment of the Medical Information Mart for Inten-
sive Care IV (MIMIC-IV version 1.0) database was approved by
the Massachusetts Institute of Technology (Cambridge, MA) and
Beth Israel Deaconess Medical Center (Boston, MA), and patients
provided their consent to have their data captured in the database.
Thus, the ethical approval statement was waived in this study, as
the data in the MMIC-IV database were unidentifiable.

2.2. Data source

This study gathered clinical data from the MIMIC-IV database
between 2008 and 2019. MIMIC-IV is a large, single-center, open-
access database comprising 76,540 ICU admissions [17]. We
accessed the MIMIC-IV after completion of the Protecting Human
Research Participants exam (Record ID: 47460147). This study
was conducted in accordance with the principles of the Declaration
of Helsinki in 2013, and all reporting followed the Transparent
Reporting of a multivariable prediction model for Individual Prog-
nosis or Diagnosis (TRIPOD) Statement [18].

2.3. Study population

All adult (aged 18 years old and older) individuals diagnosed
with AKI were enrolled in this study. AKI was defined and classified
according to the Kidney Disease: Improving Global Outcomes
(KDIGO) criteria during the first 24 h after ICU admission [19]. In
brief, the KDIGO criteria included an increase in serum creatinine
by � 0.3 mg/dl within 48 h; an increase in serum creatinine
to � 1.5 times baseline, which is known or presumed to have
occurred within the prior 7 days; or urine volume <0.5 mL/kg/hour
for 6 h. Details on the definition and classification of AKI are pro-
vided in Supplementary Table S1. For patients with multiple ICU
admissions during hospitalization, only the first admission was
included for analysis. We excluded patients with an ICU length of
stay of <3 h.

2.4. Data collection and preprocessing of data

We used structured query language (SQL) programming in Nav-
icat Premium (version 15) to extract clinical data from the MIMIC-
IV database. The information collected from the database followed
the Deshmukh et al. [13] procedure. We collected information
related to the patients’ demographic characteristics, history of
chronic diseases, vital signs, laboratory findings, medical treat-
ments, severity scores of illness and outcomes.

Demographic variables collected for the study included age, sex,
body weight and height. Medical conditions included hyperten-
sion, diabetes, congestive heart failure, cerebrovascular disease,
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chronic pulmonary disease, liver disease, tumor and acquired
immune deficiency syndrome. We collected mean values in the
first 24 h after ICU admission for the vital sign data, including heart
rate, systolic blood pressure, diastolic blood pressure, mean blood
pressure, respiratory rate, body temperature and SpO2. For labora-
tory findings, we collected the maximum value in the first 24 h
after ICU admission including blood glucose, lactate, pH, pCO2, base
excess, white blood cell count, anion gap, bicarbonate, blood urea
nitrogen, serum calcium, serum chloride, serum creatinine, serum
sodium, serum potassium, serum fibrinogen, international normal-
ized ratio, prothrombin time, partial thromboplastin time, alanine
aminotransferase, alkaline phosphatase, aspartate aminotrans-
ferase, total bilirubin, creative phosphokinase, creatine kinase MB
and lactate dehydrogenase. The minimum values in the first 24 h
after ICU admission were selected for the PaO2/FiO2 ratio, hemat-
ocrit, hemoglobin, platelets, albumin and globulin. Medical treat-
ments included the use of antibiotics, mechanical ventilation and
vasopressors during the first 24 h after ICU admission. For the
severity scores of illness, we calculated the maximum value for
Sequential Organ Failure Assessment (SOFA), Oxford Acute Severity
of Illness Score (OASIS), Simplified Acute Physiology Score II (SAPS-
II), and the minimum value for Glasgow Coma Scale (GCS) during
the first 24 h after ICU admission. We also collected the cumulative
urine output during the first 24 h after ICU admission. A summary
of each variable can be found in Supplementary Table S2. The code

is available at https://github.com/MIT-LCP/mimic-iv.
Variables with more than 20% missing values were removed

from further analysis. The multiple imputation method, recognized
as a better approach to deal with missing observations in both out-
come and independent variables, was used to handle missing data
below 20% using the ‘mice’ package in R. To avoid overfitting, we
used least absolute shrinkage and selection operator (LASSO)
regression to identify potential variables associated with mortality.
2.5. Statistical analysis

The normal distribution of continuous variables was deter-
mined by the Kolmogorov-Smirnov test. The normally distributed
variables were described as the means ± standard deviations
(SD), while the skewed distributed variables were expressed as
the median and interquartile range (IQR), and the categorical vari-
ables were expressed as number and percentages. Continuous vari-
ables between groups were compared by Student’s t-test or the
Mann–Whitney U test, as appropriate. Categorical variables
between groups were compared by Pearson’s chi-squared test or
Fisher’s exact test, as appropriate.

All statistical analyses were performed using Python (Version
3.6.6) and R software (Version 3.6.1, R Foundation for Statistical
Computing). A P value (2-sided) below 0.05 was considered as sta-
tistically significant.
2.6. Machine learning model for feature mining and feature
visualization

Stable and significant features were very important to predict
the risks of in-hospital mortality, and the feature-related in-
hospital risks were studied with feature mining and feature visual-
ization. In feature mining, all patients enrolled in the study were
randomly split into a training set (75%) and a validation set
(25%). We used the LASSO [20] algorithm to reduce the dimension-
ality of the features. The seven ML methods [Support Vector
Machine (radial bias function) (SVM)[21], k-Nearest Neighbors
(KNN) [22], eXtreme Gradient Boosting (XGBoost) [12], Decision
Tree (DT)[23], Naive Bayes (NB) [24], Random Forest (RF) [25]
and logistic regression (LR) [26] were used to develop and validate
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the models for assessing risks of in-hospital mortality. Predictive
performance for the classifiers was evaluated using the accuracy,
area under the receiving operating characteristic curve (AUC), sen-
sitivity, and specificity measures. DeLong’s test was performed to
assess the differences in AUC. The calibration curve was used to
compare the prediction probability of the models and the ground
truth. Our final candidate model was selected based on the accu-
racy and the AUC. First, we used the SHAP values to visualize the
significant features that influence the risks of mortality, to analyze
the importance of individual features affecting the output of the
model and to visualize the impact of key features on the final
model in individuals. Next, we conducted the LIME [27] algorithm
to fit the predictive behavior of the model. The details of the pro-
Fig. 1. Flowchart of this study. MIMIC-IV, Medical Information Mart for Intensive Care
explanation; LIME, Local Interpretable Model-Agnostic Explanations.
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cedure in this study are shown in Fig. 1. Subgroup analyses based
on different KDIGO stages were performed. Sensitivity analyses
were conducted for the outcome by removing the most crucial fac-
tor from our final candidate model.
3. Results

3.1. Participants

A total of 33,020 participants diagnosed with AKI were screened
for eligibility; of these 33,020 patients, 10,657 were excluded due
to multiple ICU admission (only the first admission was included
IV; LASSO, least absolute shrinkage and selection operator; SHAP, SHapley Additive
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for analysis), and 3 were excluded due to an ICU length of stay
of <3 h. Finally, 22,360 patients were eligible for participation
(Fig. 1). The prevalence of in-hospital mortality was 15.6%
(3484/22360). These patients had a median age of 69.5 (IQR,
58.3–79.9) years and 42.8% (9574/22360) were female. Hyperten-
sion (9245/22360, 41.3%), diabetes (7268/22360, 32.5%) and con-
gestive heart failure (6819/22360, 30.5%) ranked as the top 3
comorbidities. The baseline characteristics of the dataset are sum-
marized in Table 1.

3.2. Predictor selection

Nineteen variables with more than 20% missing values were
removed (Supplementary Fig. S1). Multiple imputation by chained
equation was used to impute missing values for each variable
Table 1
Demographic and clinical characteristics at baseline.

Characteristics Total (n = 22360) S

Demographics
Age, year 69.5(58.3–79.9) 6
Sex
Male, n (%) 12786(57.2) 1
Female, n (%) 9574(42.8) 7

Weight, kg 83(70–99) 8

Comorbidities, n (%)
Hypertension 9245(41.3) 7
Diabetes 7268(32.5) 6
Congestive heart failure 6819(30.5) 5
Cerebrovascular disease 3215(14.4) 2
Chronic pulmonary disease 5694(25.5) 4
Liver disease 3062(13.7) 2
Renal disease 5328(23.8) 4
Tumor 3259(14.6) 2
Acquired immune deficiency syndrome 86(0.4) 6

Vital signs on Day 1
Heart rate, bpm 84(74–95) 8
Systolic blood pressure, mmHg 114(106–125) 1
Diastolic blood pressure, mmHg 60(54–67) 6
Mean arterial pressure, mmHg 75(70–82) 7
Respiratory rate 19(17–21) 1
Body temperature, ℃ 36.8(36.6–37.1) 3
SpO2, % 93(90–95) 9

Laboratory findings on Day 1
White blood cell, K/uL 13.6(9.9–18.4) 1
Hematocrit, % 30(25–34) 3
Hemoglobin, g/dL 9.8(8.4–11.4) 9
Platelets, K/uL 164(115–224) 1
Blood urea nitrogen, mg/dL 23(16–37) 2
Serum creatinine, mg/dL 1.2(0.9–1.9) 1
International normalized ratio 1.3(1.2–1.6) 1
Prothrombin time, s 14.6(12.8–17.5) 1
Partial thromboplastin time, s 32.8(28.3–45.0) 3
Blood glucose, mg/dL 169(135–214) 1
Anion gap, mEq/L 16(13–19) 1
Bicarbonate, mmol/L 24(22–26) 2
Serum sodium, mEq/L 140(137–142) 1
Serum potassium, mEq/L 4.5(4.1–5.0) 4
Serum calcium, mg/dL 8.5(8.0–9.0) 8
Serum chloride, mEq/L 106(102–110) 1

Medical treatments, n (%)
Antibiotics 9281(41.5) 7
Mechanical ventilation 10508(47.0) 8
Vasopressors 6398(28.6) 4
Urine output on Day 1, mL 1180(735–1760) 1

Severity scores of illness
GCS 14(11–15) 1
SOFA 5(3–8) 5
OASIS 34(28–41) 3
SAPS-II 38(30–48) 3

Data were reported as no. (%) or median (IQR).
GCS, Glasgow Coma Scale; SOFA, Sequential Organ Failure Assessment; OASIS, Oxford A
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below 20%. Forty variables measured on the first day after ICU
admission were included in the LASSO regression. After LASSO
regression selection with 5-fold cross-validation via minimum cri-
teria, 29 variables remained as significant predictors for mortality
(Supplementary Fig. S2), and the details of the variables are shown
in Supplementary Table S3.

3.3. Model development and validation

A total of 22,360 patients were selected and randomly split into
a training cohort (16770, 75%) and a validation cohort (5590, 25%).
We used 29 variables selected by LASSO regression as input factors
(Supplementary Table S3), and seven ML methods, including SVM,
KNN, XGBoost, DT, NB RF and LR, were established to predict out-
come. In the validation cohort, the XGBoost model achieved the
urvivors (n = 18876) Non-survivors (n = 3484) P value

8.8(57.8–79.2) 73.4(61.4–83.4) <0.001
0.001

0886(57.7) 1900(54.5)
990(42.3) 1584(45.5)
4(70–100) 78(65–94) <0.001

915(41.9) 1330(38.2) <0.001
218(32.9) 1050(30.1) 0.001
631(29.8) 1188(34.1) <0.001
505(13.3) 710(20.4) <0.001
779(25.3) 915(26.3) 0.239
129(11.3) 933(26.8) <0.001
361(23.1) 967(27.8) <0.001
431(12.9) 828(23.8) <0.001
9(0.4) 17(0.5) 0.284

3(74–93) 91(77–104) <0.001
15(107–125) 108(100–120) <0.001
0(54–67) 59(52–66) <0.001
6(70–83) 73(67–80) <0.001
8(16–21) 21(18–24) <0.001
6.8(36.6–37.1) 36.7(36.4–37.1) <0.001
3(91–95) 91(86–94) <0.001

3.3(9.8–17.8) 15.3(10.4–21.4) <0.001
0(25–34) 29(24–35) <0.001
.9(8.4–11.5) 9.4(7.9–11.2) <0.001
65(118–224) 152(89–225) <0.001
1(15–33) 35(22–54) <0.001
.1(0.8–1.7) 1.8(1.1–2.8) <0.001
.3(1.1–1.5) 1.6(1.2–2.3) <0.001
4.4(12.7–16.8) 17.0(13.7–24.9) <0.001
2.1(28.0–41.9) 40.0(30.6–66.5) <0.001
68(135–209) 178(138–248) <0.001
5(13–18) 19(16–24) <0.001
4(22–27) 22(19–25) <0.001
40(137–142) 140(136–144) <0.001
.5(4.1–5.0) 4.7(4.2–5.4) <0.001
.5(8.0–9.0) 8.5(8.0–9.1) 0.004
06(103–110) 106(101–110) <0.001

356(39.0) 1925(55.3) <0.001
627(45.7) 1881(54.0) <0.001
855(25.7) 1543(44.3) <0.001
255(820–1820) 727(300–1286) <0.001

4(12–15) 11(5–15) <0.001
(3–7) 10(6–13) <0.001
3(27–39) 43(37–49) <0.001
6(29–45) 53(42–65) <0.001

cute Severity of Illness Score; SAPS-II, Simplified Acute Physiology Score II.
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best performance with an AUC of 0.890 (RF: 0.885; NB: 0.842; LR:
0.840; SVM: 0.756; KNN: 0.674; DT: 0.676; respectively) (Fig. 2A).
To further evaluate the performance of the seven models, preci-
sion, sensitivity and specificity were also calculated and the results
are shown in Table 2. Although the AUC in the XGBoost model was
numerically higher than that the RF model (0.890 vs. 0.885) with-
Fig. 2. ROC curves for the machine-learning models and traditional severity of
illness scores to predict in-hospital mortality. (A) AUCs are shown for all 7
machine-learning models in the validation cohort. (B) Comparison of the AUC value
between the XGBoost model and traditional severity of illness scores invalidation
cohort (OASIS and SAPS-II). XGB, eXtreme Gradient Boosting; RF, Random Forest;
SVM, Support Vector Machine (radial bias function); LR, Logistic Regression; NB,
Naive Bayes; KNN, k-Nearest Neighbors; DT, Decision Tree; OASIS, Oxford Acute
Severity of Illness Score; SAPS-II, Simplified Acute Physiology Score II; AUC, the area
under curve; ROC, receiving operating characteristic curve.

Table 2
Performance of the seven ML models for predicting in-hospital mortality.

ML models Accuracy, % AUC, 95% CI

XGBoost 87.7 0.890(0.880–0
RF 87.5 0.885(0.876–0
NB 84.3 0.842(0.833–0
LR 86.0 0.840(0.830–0
SVM 83.8 0.756(0.742–0
KNN 84.4 0.674(0.662–0
DT 82.6 0.676(0.665–0

ML, machine learning; XGBoost, eXtreme Gradient Boosting; RF, Random Forest; SVM, Sup
KNN, k-Nearest Neighbors; DT, Decision Tree; AUC, the area under curve.
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out achieving statistical significance (P = 0.342) (Supplementary
Table S4), the visual inspection of the calibration plots suggested
that the XGBoost model was superior to the RF model in consis-
tency (Supplementary Fig. S3). Similarly, the XGBoost model per-
formance surpassed those of other clinical scores for disease
severity [SAPS-II (AUC): 0.782; OASIS (AUC): 0.782] (Fig. 2B). Thus,
the XGBoost model was selected for further prediction.
3.4. Model explainability

We tried to open the ‘black box’ in the XGBoost model by SHAP
values and explained how the model works in predicting mortality.
The feature importance ranking with the SHAP summary plot for
the XGBoost model is presented in Fig. 3A, and the top 4 most
important variables contributing to the model were GCS, blood
urea nitrogen, cumulative urine output on Day 1, and age. Addi-
tionally, we depicted how a single variable affected the output of
the XGBoost prediction model using SHAP dependence analysis
(Fig. 3B). More detailed results of the top 4 most important clinical
features affecting the output of the XGBoost prediction model are
shown in Fig. 4.

Then, we used SHAP force analysis and the LIME algorithm to
explain the individualized prediction of death by drawing two
samples from the validation set. Fig. 5A and Fig. 5B present a
deceased case using SHAP force analysis and the LIME algorithm,
respectively. This case was an 81-year-old woman with a history
of congestive heart failure and chronic pulmonary disease admit-
ted to the ICU for AKI. The predicted probability for death by the
XGBoost model was 93%. Factors detected by the XGBoost model
that increased the risk of death were GCS score of 3, urine output
on Day 1 of 162 mL, blood urea nitrogen of 45 mg/dL and serum
sodium of 154 mmol/L. Factors that decreased the risk of death
included the lack of a history of cerebrovascular disease or tumor.
The outcome predicted by the XGBoost model was death for this
patient and the actual outcome was also death. Similarly, Fig. 5C
and Fig. 5D present a survival case using SHAP force analysis and
the LIME algorithm, respectively. This case was a 79-year-old
woman admitted to the ICU for AKI. The predicted probability for
death by the XGBoost model was 17%. The patient’s elevated serum
sodium of 150 mEq/L, a need for mechanical ventilation on Day 1
and systolic blood pressure of 102 mmHg contribute to increasing
the death risk, while a GCS score of 14, the cumulative urine output
of 1790 mL on Day 1 and no history of tumor or cerebrovascular
disease contributed to decreasing the patient’s death risk. The out-
come predicted by the XGBoost model was survival for this patient,
and the actual outcome was also survival.
3.5. Subgroup analyses

Prespecified subgroup analyses conducted for the different
KDIGO stages showed that the XGBoost model remained robust
in predicting mortality among patients with KDIGO stage 1
Sensitivity, % Specificity, %

.897) 82.5 79.6

.893) 78.2 83.2

.852) 74.1 78.6

.849) 77.3 75.2

.765) 65.0 78.4

.687) 52.7 79.1

.683) 44.4 89.4

port Vector Machine (radial bias function); LR, Logistic Regression; NB, Naive Bayes;



Fig. 3. SHAP summary plot for the top 20 clinical features contributing to the
XGBoost model. (A) Ranking of feature importance indicated by SHAP. The matrix
plot depicts the importance of each covariate in the development of the final
predictive model. (B) The attributes of the features in the black box model. Each line
represents a feature, and the abscissa is the SHAP value. Red dots represent higher
feature values, and blue dots represent lower feature values. SHAP, SHapley
Additive explanation; XGBoost, eXtreme Gradient Boosting. GCS, Glasgow Coma
Scale; BUN, blood urea nitrogen; RR, respiratory rate; MV, mechanical ventilation;
HR, heart rate; PTT, partial thromboplastin time; CVD, cerebrovascular disease;
MAP, mean arterial pressure; WBC, white blood cell. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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(N = 1184), KDIGO stage 2 (N = 2823) and KDIGO stage 3 (N = 1583)
(AUC: 0.929; 0.888; 0.830; respectively). The detailed results are
shown in Supplementary Fig. S4.
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3.6. Sensitivity analyses

When excluding the GCS score in the XGBoost model, the AUC
for mortality prediction in AKI patients was 0.830 (Supplementary
Fig. S5). In addition, the prediction results of the XGBoost model on
samples were counted in the validation set, and the distribution of
the two cases (one survival and one deceased) of the aggregated
prediction results was also visualized using the LIME algorithm
(Supplementary Fig. S6).
4. Discussion

In this study, we developed and validated seven ML methods
using twenty-nine clinical variables to assess the risks of in-
hospital mortality in critically ill patients with AKI. The XGBoost
model exhibited the best performance in terms of discrimination
and accuracy. Subgroup analyses also revealed that the XGBoost
model achieved robust performance for the prediction of death in
different KDIGO stages. Additionally, SHAP values were used to
reveal the feature importance and how particular compound sub-
structures influence the XGBoost prediction. GCS, blood urea nitro-
gen, cumulative urine output on Day 1 and age were the top 4 most
important variables contributing to the XGBoost model. Finally, the
LIME algorithm was used to facilitate the individualized
predictions.

Accurate and timely prediction of mortality for AKI is required
to identify patients at high risk of clinical deterioration so that pre-
ventive measures can be taken in a timely manner, which may
reduce mortality. Several studies have attempted to establish prog-
nostic models among AKI patients with ML methods and showed a
modest prognostic yield [5,7,8,28–34]. For example, a study from
the US constructed a prognostic model for predicting 60-day mor-
tality in critically ill patients with AKI. They found that the predic-
tive model with logistic regression yielded an AUC of 0.85 (95% CI:
0.83–0.88), surpassing those of APACHE II and SOFA [5]. However,
this study did not perform internal or external validation. In 2019,
Lin and colleagues constructed prediction models of mortality risk
based on the RF, ANN (artificial neural network) and SVM for AKI
patients. In the testing set, they found that the RF model had the
largest AUC (0.866, 95% CI: 0.862–0.870) [7]. A recent modeling
study for AKI also found that the XGBoost model achieved the best
performance with an AUC of 0.796, compared to the LR, SVM and
RF models (AUC: 0.662, 0.667, and 0.692, respectively) [28]. How-
ever, all the above ML models were established based on limited
algorithm tools and were at a loss to adequately explain how they
work. In the current study, we developed a variety of ML
approaches containing the linear model (e.g., LR), kernel-based
method (e.g., SVM), gradient boosting classifier (e.g., XGBoost)
and other ML models (e.g., KNN, NB, DT and RF) and selected the
optimal one with the best performance in discrimination and accu-
racy. Furthermore, we summarized the previous clinical prediction
model related to mortality risk prediction in AKI patients and
found that the XGBoost model in the current study performed best
with an AUC of 0.890 in the validation cohort (Supplementary
Table S5). Moreover, given the opaque black box nature of ML,
we utilized the SHAP values and LIME algorithm to interpret and
reveal the most important factors contributing to the prediction
results, which greatly improved the model’s interpretability.

In the current study, a summary of feature importance in the
XGBoost model showed that the GCS score was the most crucial
factor in the development of death in patients with AKI. The GCS
score, as a common indicator of consciousness ranging from 3 to
15, can obviously show the neurological changes among critically
ill patients [35]. Concurrently, there was a strong correlation
between the GCS score and clinical outcome [36]. Nevertheless,



Fig. 4. SHAP dependence plot for the top 4 clinical features contributing to the XGBoost model. GCS; (B) BUN; (C) Urine output; (D) Age. SHAP values for specific features
exceed zero, representing an increased risk of death. GCS, Glasgow Coma Scale; BUN, blood urea nitrogen; SHAP, SHapley Additive explanation; XGBoost, eXtreme Gradient
Boosting.
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none of the previous models included this critical feature in pre-
dicting mortality risk for AKI patients [5,7,8,28,29]. Our study
found that blood urea nitrogen (ranked 2nd) and the cumulative
urine output on Day 1 (ranked 3rd) were closely associated with
mortality in AKI. Blood urea is excreted mainly by the kidney.
The elevated blood urea nitrogen level indicated renal lesions,
which also increased the risk of adverse outcomes [4]. Additionally,
urine output has been found to be a marker for AKI and to be asso-
ciated with adverse outcomes in critically ill patients [37]. Age was
also another key factor for predicting mortality, which had been
studied in previous reports as an independent predictor for hospi-
tal mortality among AKI patients[8].

The present study developed and validated a good performance
model for mortality prediction in critically ill patients admitted for
AKI, with a large sample size from the MIMIC-IV database and a
precise definition of AKI. The model was built based on 29 candi-
date variables related to patients’ demographic characteristics,
medical history, vital signs, laboratory findings, medical treat-
ments and GCS score, which was more systematic and robust than
previously reported models that included only parts of investiga-
tive modalities. Overfitting is one of the critical problems in devel-
oping models by ML, which may lead to inadequate conclusions. In
this study, we performed LASSO regression to reduce overfitting in
the process of feature selection. This method surpasses the method
of selecting predictors according to the strength of their univari-
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able association with outcome. In addition, no other severity score
of illness except GCS was enrolled as input variables for model con-
struction due to the possible reuse of variables (such as SOFA score
contains total bilirubin, vasopressor use, GCS, serum creatinine and
urine output). Additionally, we attempted to use the latest meth-
ods (SHAP value and LIME algorithm) to interpret and analyze
why and how the XGBoost model worked during execution.
Although LIME and SHAP values showed a similar trend overall
for model interpretation, they were also presented with distin-
guishing specific regions of slight mismatch. These differences
indicated where features go from favoring survived to favoring
deceased. Moreover, this early warning system is being translated
for clinical implementation in cooperation with technology com-
panies, and our team will look forward to its clinical use in the
future.

However, there were also several limitations in this study. First,
many laboratory parameters were removed before model con-
struction due to missing data of over 20% (e.g., D-dimer, globulin,
and albumin). Second, as a critical parameter to understand the
pathological mechanisms of disease, the etiology of AKI was not
recorded in the MIMIC-IV database, and we failed to add this factor
to the model construction. These may have inevitably caused selec-
tion bias. Third, the clinical indicators were gathered using a
single-center database due to the nature of MIMIC-IV. Fourth,
although XGBoost does take into account interactions between fea-
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tures, these potentially relevant interactions will not be shown by
LIME as it is a linear model. In addition, although LIME provides an
explanation, this explanation depends on the parameters used to
develop the local model, and by changing the parameters, other
(potentially very different) explanations can arise. Fifth, the models
were validated internally only in this study and further multicenter
external validation is needed to verify the model’s discriminating
ability and generalizability.
5. Conclusions

The ML models based on clinical features were developed and
validated with great performance in the early prediction of a high
risk of death in AKI. Application of the SHAP values and LIME algo-
rithm in ML may help physicians in clinical decision-making.
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